Friday 26 July 2013

Thrust

In mechanical engineering, force orthogonal to the main load (such as in parallel helical gears) is referred to as thrust.

A motorboat generates thrust (or reverse thrust) when the propellers are turned to accelerate water backwards (or forwards). The resulting thrust pushes the boat in the opposite direction to the sum of the momentum change in the water flowing through the propeller.


Thrust is the force which moves an aircraft through the air. Thrust is used to overcome the drag of an airplane, and to overcome the weight of a rocket. Thrust is generated by the engines of the aircraft through some kind of propulsion system.

A jet engine has no propeller, so the propulsive power of a jet engine is determined from its thrust as follows. Power is the force (F) it takes to move something over some distance (d) divided by the time (t) it takes to move that distance
\mathbf{P}=\mathbf{F}\frac{d}{t}
In case of a rocket or a jet aircraft, the force is exactly the thrust produced by the engine. If the rocket or aircraft is moving at about a constant speed, then distance divided by time is just speed, so power is thrust times speed
\mathbf{P}=\mathbf{T}{v}


Sunday 21 July 2013

Spark Plug

The spark plug is quite simple in theory: It forces electricity to arc across a gap, just like a bolt of lightning. The electricity must be at a very high voltage in order to travel across the gap and create a good spark. Voltage at the spark plug can be anywhere from 40,000 to 100,000 volts.
http://www.2carpros.com/images/articles/engine/maintenance/tune_up/spark_plugs/how_to_gap_a_spark_plug.jpg
Spark plugs may also be used for other purposes; in Saab Direct Ignition when they are not firing, spark plugs are used to measure ionization in the cylinders - this ionic current measurement is used to replace the ordinary cam phase sensor, knock sensor and misfire measurement function. Spark plugs may also be used in other applications such as furnaces wherein a combustible fuel/air mixture must be ignited. In this case, they are sometimes referred to as flame igniters.
http://static.ddmcdn.com/gif/change-spark-plugs-1.jpg

Operation::

http://www.ngk.de/uploads/tx_templavoila/ngk_einbaulage_zuendkerzen_en_01.jpg
The plug is connected to the high voltage generated by an ignition coil or magneto. As the electrons flow from the coil, a voltage difference develops between the central electrode and side electrode. No current can flow because the fuel and air in the gap is an insulator, but as the voltage rises further, it begins to change the structure of the gases between the electrodes. Once the voltage exceeds the dielectric strength of the gases, the gases become ionized. The ionized gas becomes a conductor and allows electrons to flow across the gap. Spark plugs usually require voltage of 12,000–25,000 volts or more to 'fire' properly, although it can go up to 45,000 volts. They supply higher current during the discharge process resulting in a hotter and longer-duration spark.